

«KAMBARATA-1» HPP PROJECT

CENTRAL ASIA - OVERVIEW

Countries Kyrgyz Republic, Kazakhstan, Tajikistan, Turkmenistan, Uzbekistan

GPD per capita US \$5,900 (2023; nominal) [US \$1,200 – \$11,000]

Population 77,039,830 (2022)

GDP US \$454 billion (2023)

LONG-TERM FORECASTS FOR CENTRAL ASIA (2050)

(«status quo» scenario)

The current economic disparity may persist

Forecast of nominal GDP of Central Asian countries

Consumption of drinking water in Central Asian countries +50 % Drinking water demand in Central Asian countries

Population of Central Asian countries +27 % by 2050

Population dynamics of Central Asian countries

Uzbekistan

---- Kyrgyzstan

Tajikistan

Turkmenistan

CENTRAL ASIA: CHALLENGES OF THE BLUE ECONOMY

Where Water Stress Will Be Highest by 2040

Projected ratio of water withdrawals to water supply (water stress level) in 2040

World drought risk map

- Extremely high (>80 %)
 - High (>40-80 %)
 - Medium to high (>20-39 %)
 - Low to medium(>10-19 %)

- Water stress risk forecast is extremely high in Central Asia
- Reservoirs allow water to be stored in high hydrology years and used in dry ones
- Optimized hydro cascades secure energy production, flood protection and irrigation water

High (0.8-1.0)
 Low to medium(0.2-0.4)
 Medium to high (0.6-0.8)
 Low (0.0-0.2)
 Medium (0.4-0.6)
 No data

Low (>10-19 %)

(nominal)

in 2022 to **10.8 %** in

2023

КАБИНЕТ МИНИСТРОВ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

(January 2024)

CENTRAL ASIA & KYRGYZ REPUBLIC – ENERGY SECTOR

Kazakhstan

INVESTMENT OPPORTUNITIES: NAVIGATING REGIONAL CHALLENGES

ELECTRICITY DEMAND PROJECTIONS

Electricity mix in Central Asia (TWh)

Tajikistan

Electricity demand in Central Asia (average annual growth rate %)

Uzbekistan

COUNTRY	2018 to 2022	2022 to 2030	2022 to 2050
Kyrgyzstan	1.3 %	3.3 %	5.5 %
Kazakhstan	1.9 %	3.5 %	4.6 %
Turkmenistan	1.7 %	3.0 %	6.7 %
Uzbekistan	6.8 %	4.0 %	6.4 %
Tajikistan	3.5 %	4.3 %	5.6 %
Central Asia	3.4 %	3.7 %	5.6 %

Ensuring Energy Security: Energy demand in Central Asia to grow by 40 % by 2030, and 3x by 2050 («Net zero» scenario)

Meeting Electricity Demand: Electricity demand in Central Asia is expected to grow at a CAGR of 5,6 % from 2022 to 2050

Covering Power Deficit: Significant power shortages in Central Asia especially during winter season

Creating Regional Trade: Hydropower electricity trade in the region via the CAPS and CASA-1000 project

Clean Energy Transition: Kyrgyzstan is utilizing ~ 12 % of its hydropower potential, indicating significant untapped opportunities

Reducing GHG Emissions: Reduction of GHG emissions in Central Asia by reducing reliance on coal and gas

KYRGYZ REPUBLIC – ENERGY SECTOR

Hydro

In Central Asia, energy supply not keeping up with demand growth

Energy shortages esp. during winter season

In the Kyrgyz Republic, seasonality of demand is even much higher: winter demand 2,5 times higher than that of summer Hydropower and renewable potential is huge yet untapped

Tremendous renewable potential

Energy demand in Central Asia to grow by 40 % by 2030, and triple by 2050

Solar

0%

In the case of construction of Kambaraata-1 and renewable sources in Kyrgyzstan, the electricity generation mix will look as follows: 11 % - thermal power generation; 69 % - hydro generation; 20 % - renewables generation.

Solar potential 490 million kW/h

Hydropotential 142 billion kW/h Biomass 1,3 billion kW/h

Wind potential **44,6 million kW/h**

INVESTMENT OPPORTUNITIES: OVERVIEW

12 Promising Clean Energy Projects: USD 16 billion Investment Opportunities

	Cascade	Capacity
Talas SPP	Kombarata UDD (Netional project)	1 960 MW
Kokomeren HPP		
Kyzyl-Adyr alas sales Cascade Tokmok (Tokmak) Barykchy V I I VII Karakol	Kazarman HPPs (National project)	1,160 MW
Kochkorka Kochkorka	Chatkal HPP	251 MW
Chatkal HPP Kambarata 1 HPP Tokogo Kazarman HPP Upper Naryn Ak-Shyyrak Sary Jaz HPP	Sary Jaz HPPs	1,100 MW
Terek-Say, Kerben, sol Kara-Kölkara-Kul)	Upper Naryn HPPs	238 MW
Ala-Buka Tash-Kömür (Tash-Kumyr) Kazarman Nanya Olymon Kara-Say Baetov	Suusamyr-Kokomeren HPPs	1,305 MW
Jalal-Abad (Dzhalal-Abad) Kok-Yangak Özgön Özgön	Kongorchok SPP	100-150 MW
Tar-Kapchygay SHPP ^{asu} ^{Osh} ultha Upper Tar SHPP	Talas SPP	100-150 MW
Sülüktü Shuroty o Kyzyl-Kyya Imeni Kalinina (Kugart)	Alga SPP	100-150 MW
Isfana Vorukh Khaydarkan Shekkimardan (TAJ) Sarv-Tash	Chon-Ak-Suu SHPP	11.4 MW
Karamyk Daroot-KorgonBordaba	Tar-Kapchygay SHPP	30 MW
	Upper Tar SHPP	17 MW

INVESTMENT OPPORTUNITIES: INVESTMENT INCENTIVES

Financial Incentives

Financial Incentives:

- Privileges and incentives for 15-25 years
- 5-year income tax holiday
- VAT holiday on the import of equipment and goods

Investor Support

Investor Support:

- Protection of investor rights and interests
- Support in land allocation

Revenue considerations

Revenue considerations:

- 100 % offtake of produced electricity
- Tariff indexation for foreign exchange

Market Opportunities

Market Opportunities:

 Electricity export potential to Afghanistan and Pakistan via CASA-1000

INVESTMENT OPPORTUNITIES: POTENTIAL OFFTAKERS

KAZAKHSTAN

- Grid connection available
- Joint development of hydro project, offtake of electricity and water management

- CHINA
- Discussion ongoing on connecting the power grids
- Potential joint project development and electricity offtake

UZBEKISTAN

- Grid connection available
- Joint development of hydro project, offtake of electricity and water management

• Power supply through CASA-1000

Hydropower with reservoir storage in the Kyrgyzstan and Tajikistan can help stabilize the grid and integrate other renewables throughout the region. Additionally, the above potential off-takers are pursuing cost-effective, sustainable energy solutions, achievable through the investment opportunities detailed in the subsequent slides

IMPORTANCE OF THE NARYN-SYRDARYA WATER ARTERY FOR CENTRAL ASIA

Toktogul reservoir was designed to regulate the flows for crop irrigation downstream in UZ and KZ (peak demand in summer) → water releases for irrigation closely matched natural hydrology

Kamabarata-1 will improve management of water resources → provide electricity to KR in winter and allow Toktogul to release more water in summer for irrigation in UZ and KZ

Kambarata-1 is a transformational regional project for Central Asia

- and will deliver significant economic, social, and environmental benefits for the region

Energy Security	 Kambarata-1 is critical to meet the growing energy demand and enhance energy security in the region Enable energy security by avoiding reliance on imported energy 		
Clean Energy Transition	 Ramp up power generation toward winter peak demand, solving the seasonal energy dencits Displace gas and coal fired generation and enable large-scale deployment of RE in Kyrgyz Republic, Kazakhstan, and Uzbekistan through its flexible storage capacity Decarbonize the energy sectors in Central Asia (now dependent on coal and gas - above 70 %). Electricity generation at Kambarata-1 will reduce emissions of air pollutants by 31.4 tons per year 		
Improved Water Management in Central Asia	 Better management of water resources in Central Asia across seasonal variations, making it possible to better meet the irrigation and other water needs of downstream countries (Uzbekistan, Kazakhstan) Least-cost clean energy in the Kyrgyz Republic and Central Asia, resulting in lowering the costs of energy transition in the region Greenfield project, with FS and ESIA prepared by SNC-Lavalin/ ENEX in 2014 Manageable E&S (no physical resettlement currently anticipated) Larger energy exports revenues for Kyrgyz Republic Broader economic development impacts of Kambarata-1 both for the country and region 		
Least Cost Solution			
Manageable E&S Risks			
Export Revenue			

KAMBARATA 1: PROJECT OVERVIEW

КАБИНЕТ МИНИСТРОВ КЫРГЫЗСКОЙ РЕСПУБЛИКИ

Located on the upstream reach of the

Installed capacity: 1,860 MW (~50 % of current installed capacity in the country)

2

Dam height: 256 m

Length of the water pipeline: 1,8 km

Total generation: 5,640 GWh

Potentinal consumers:

- CASA-1000
- Uzbekistan
- Kazakhstan

KAMBARATA-1 HPP: PROJECT OVERVIEW

PROJECT LOCATION

- Feasibility study and Environmental and Social Impact Assessment were conducted in 2014. Update of both studies is under way with support from the World Bank
- Rapid assessment as part of the **Power Sector Master Plan** also confirmed the priority of the project in 2022
- To be connected to the adjacent existing **500 kV Dakta-Kemin** line with a short (1,5 km) link
- Site preparation works are underway using Kyrgyzstan's own funds and expected to be completed by 2025 (construction of road, transport tunnel and bridge, site power supply, workers camp, etc.)

PRIORITY PREPARATION ACTIVITIES OF THE KAMBARATA-1 PROJECT

Structure		Scope	Cost estimate (US\$ million)	Status	
		Access road to site from 318th km of Bishkek-Osh highway to diversion tunnel (Cutoff No.2)	7,5	Construction	
Road	112	Transport tunnel TT with outlet portal	7,2	Construction	
		New access motor from diversion tunnel (Cutoff No. 2) to site	9,6	Design and cost estimating	
Bridge		Bridge over Naryn River	12,7	Design and cost estimating	
Power supply		OHL-110 kV (18 km) to the site of Kambarata 1 HPP and substation SS 110/35/10 kV	6,2	Construction	
Construction facilities		Construction camp	2,6	Design and cost	
Other	•••	Other site preparation works and contingency	4,2	estimating	
Total			50,0		

KAMBARATA-1 HPP: E&S CONSIDERATIONS

Parameters	s Remarks	
Land Acquisition	Minimum / no resettlement risks. The government will implement a comprehensive resettlement plan to mitigate the issue effectively	
Impacts to cultural heritage	Historical and culturally significant artifacts are present within the area of Kambarata HPP-1. This is not a significant concern, as preparing a cultural heritage assessment and management plan will effectively address this issue	
Impacts to important Biodiversity Areas	There are no nature reserves and other specially protected territories, as well as lands of the state forest found on the territory of Kambarata HPP-1. Construction of Kambarata 1 would have a limited impact on fish life, since the Naryn River is already blocked by five large dams of the Toktogul cascade, Kambarata 2 dam which has been in place since late 2009, and At-bashy HPP located further upstream on a tributary to Naryn River	
Terrestrial and aquatic biodiversity	Risks associated with biodiversity are present. However, preparing a biodiversity management plan where listed species and critical habitats exist will effectively mitigate the issue	
EIA / ESIA Status	The limited environmental and social impact studies undertaken in 2014 do not indicate any major detrimental impacts. An updated ESIA is in process	

PROJECT DEVELOPMENT HISTORY AND PROSPECTS

Thanks for your attention!