Agricultural Water Allocation Efficiency in a Developing Country Canal Irrigation System

Agha Ali Akram Evidence Action

Preview

Research question:

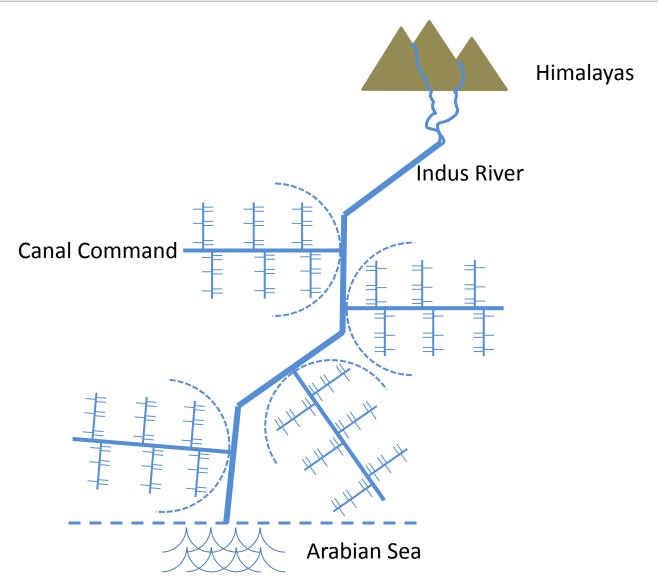
"Is water being allocated efficiently in canal irrigations systems?"

- Data:
 - Doesn't exist!
 - Irrigation system in Pakistan (Southern Punjab)
 - Two vital bits of data:
 - Production survey (post-season)
 - Water measurement survey (in-season)

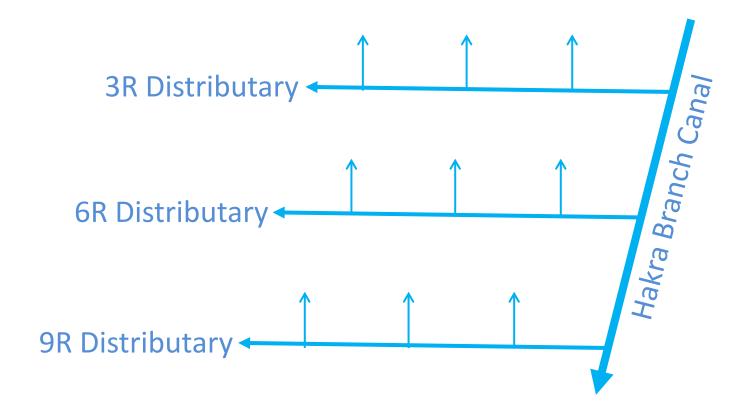
Preview

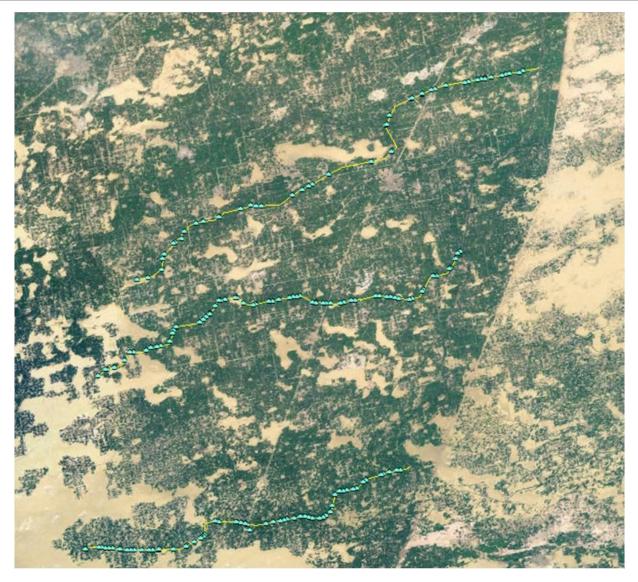
Method:

- Economic tests of efficiency in allocation:
 - Using traditional measures
 - Improved measures (volumetric)
 - Adding (some) nuance (conveyance efficiency plays a role)


Results:

- Allocation is inefficient (even when adjusting for conveyance efficiency)
- Re-allocation provides substantial gains (13% 14%)


Why do this?


- Hydro-economic models are poorly founded
- This work provides a firm basis for basin-scale modeling
- Improved climate change analysis

- Location: large scale irrigation works in Pakistan
- Hakra Branch Canal
- Chose three secondary canals and a majority of outlets in each of the secondary canals

Hakra Branch Canal – what it looks like

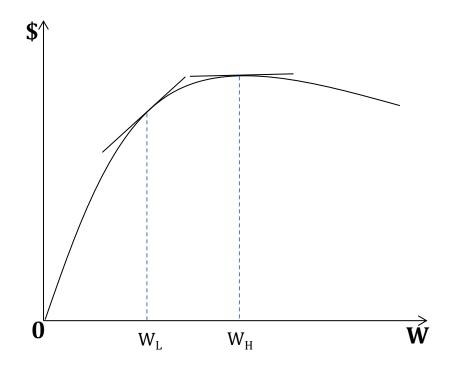
- Institutionally, controlled by the irrigation department up to outlet
- Farmers manage tertiary canals
- Discharge in the primary canal means discharge in the tertiary canals
- Warabandi fixed schedule of gate openings and closings

Data

- In-season water measurement:
 - Standard stream discharge measurement protocols
 - Measured discharge at outlets
 - Sample of 200 outlets across three secondary channels
 - "Traditional" measures

Data

- Post season production survey:
 - Followed up with post-season agricultural production survey
 - Sampled 363 farmers
 - Sampled farmer at head middle and tail reaches (of both primary and secondary canals)
 - Use of GPS to match farmers to outlets


Theory

- What does economic theory tell us?
- Basic rule that emerges:

$$\frac{\partial B_1(w_1)}{\partial w_1} = \frac{\partial B_2(w_2)}{\partial w_2}$$

- How do we test this?
- One idea: estimate a concave form for the net benefits function
- If we are able to detect a concave form, it implies inefficient allocation
- Assume: irrigation water received is exogenous

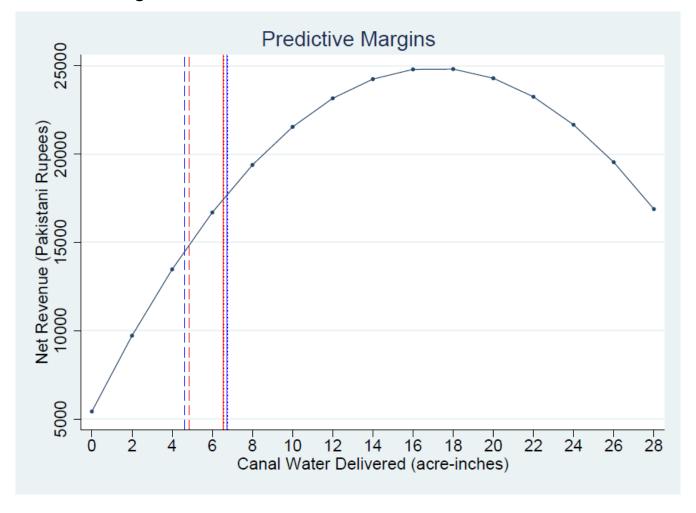
The Test

Some evidence on exogeneity of canal water

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	HHSize	Adults	Working	HeadOf	Sons	Daughters
			Members	HH	Educated	Educated
			Education			
CanalWater/Acre	-0.0142	-0.0123	0.0122	-0.00106	0.000347	-0.000734
	(0.0589)	(0.0416)	(0.0193)	(0.0260)	(0.00113)	(0.00300)
Constant	9.492***	6.104***	2.400***	3.311***	0.959***	0.950***
	(0.491)	(0.306)	(0.151)	(0.196)	(0.0129)	(0.0208)
Observations	334	334	334	334	334	334
R-squared	0.000	0.000	0.001	0.000	0.000	0.000

Some evidence on exogeneity of canal water

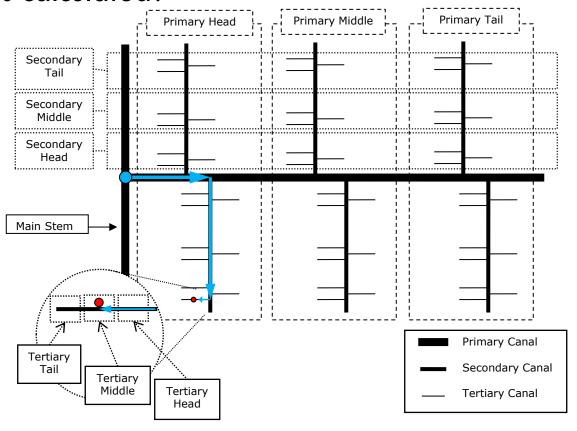
	(7)	(8)	(9)	(10)	(11)
VARIABLES	Management	Overall	Contact	Formal	Winter
	Experience	Agricultural	With	Sector	Crop
	(years)	Experience	Agricultural	Loans	BasedOn
		(years)	Extension		Summer
					Outcomes
CanalWater/Acre	-0.0566	-0.269	0.00271	-0.00211	0.000256
	(0.126)	(0.172)	(0.00567)	(0.00439)	(0.00575)
Constant	18.61***	30.14***	0.418***	0.219***	0.487***
	(0.958)	(1.181)	(0.0422)	(0.0344)	(0.0431)
Observations	334	334	334	334	334
R-squared	0.001	0.010	0.001	0.001	0.000


Some results using "traditional" farmer reported water use measures

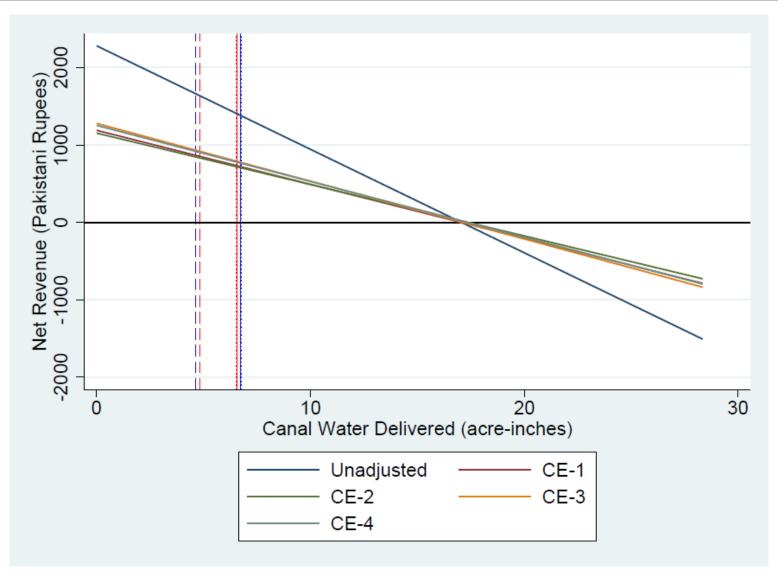
	(1)	(2)	(3)
VARIABLES	NR/Acre	NR/Acre	NR/Acre
TurnsReceived/Acre	2,008		
	(1,773)		
(TurnsReceived/Acre) ²	88.99		
	(106.9)		
TurnTime/Acre		-0.239	
		(0.314)	
$(TurnTime/Acre)^2$		7.77e-06	
		(7.07e-06)	
Depth x Turns/Acre			342.2
			(615.1)
(Depth x Turns/Acre) ²			22.83
			(20.98)
Controls	Yes	Yes	Yes
Constant	3,562	6,170	1,724
	(7,645)	(8,547)	(7,560)
Observations	334	334	334
R-squared	0.190	0.117	0.176
R-squared	0.190	0.117	0.176

■ Some results using in-season measured farmer water use

	(1)	(2)	(3)	(4)
VARIABLES	NR/Acre	NR/Acre	NR/Acre	NR/Acre
CanalWater/Acre	1,984***	2,280***		
	(666.7)	(678.0)		
(CanalWater/Acre) ²	-52.81*	-66.81**		
	(31.64)	(31.95)		
CanalWater/Acre_Spl_a_i			2,536***	
			(690.3)	
CanalWater/Acre_Spl_a_ii			-1,855**	
			(793.2)	
CanalWater/Acre_Spl_b_i				1,425***
_				(381.1)
CanalWater/Acre_Spl_b_ii				-2,190*
-1				(1,216)
				(-,)
Controls	No	Yes	Yes	Yes
Constant	5,161	-10,872	-10,224	-8,096
	(6,133)	(8,882)	(8,816)	(8,518)
	(-))	(-)/	(-)/	(-,)
Observations	334	334	334	334
R-squared	0.169	0.197	0.188	0.196


Some results using in-season measured farmer water use

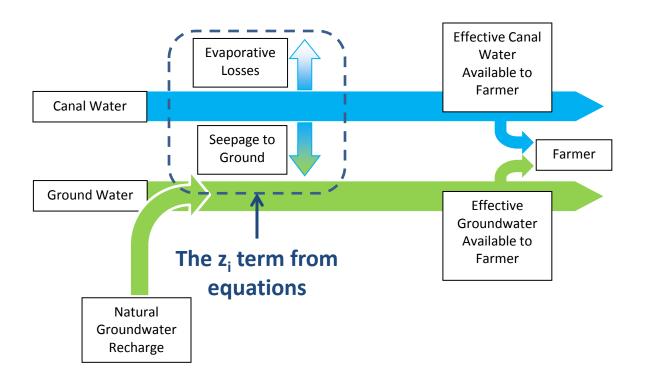
Some results using in-season measured farmer water use


- Second cut: need to account for conveyance efficiency (CE)
- How is this calculated?

New rule that emerges:

$$\frac{\partial B_1(w_1)}{\partial w_1}.z_1 = \frac{\partial B_2(w_2)}{\partial w_2}.z_2$$

- Must adjust water delivered for losses in canal system
- Cannot rely on a simple test of concavity (non-linearity) anymore
- Have to actually derive marginal net revenues and adjust for CE
- Second-order polynomial is most conducive to this


Welfare calculation – does reallocation help?*

Adjustment for	Efficient Allocation Total Net Revenues	Existing Allocation Total Net Revenues	Gain	Gain	Total Water Available
Conveyance Efficiency	(Rupees)	(Rupees)	(Rupees)	(%)	(acre-inches)
Unadjusted	3143083	3649434	506351	13.87%	2437.477
CE-1	3143083	3625869	482786	13.32%	3643.949
CE-2	3143083	3606963	463880	12.86%	3679.264
CE-3	3143083	3614624	471541	13.05%	3366.882
CE-4	3143083	3606052	462969	12.84%	3393.224

 $^{^{}st}$ Sample not representative of HBC nor other canal commands

What next?

■ Groundwater, groundwater

What next?

Groundwater, groundwater Farmer 2 Farmer 2 Groundwater Groundwater Farmer 1 Crops Farmer 2 Crops Well Well Canal Segment 2 Canal Segment 1 Farmer 1 Farmer 2 Canal Water Canal Water Delivery Delivery Crop Root Zone Seepage from Canal Segment 2 Percolation from Percolation from Single-Cell Canal Segment Seepage from Aquifer Field 1 Field 2